On A Class of Limited Memory Preconditioners For Large Scale Linear Systems With Multiple Right-Hand Sides
نویسندگان
چکیده
This work is concerned with the development and study of a class of limited memory preconditioners for the solution of sequences of linear systems. To this aim, we consider linear systems with the same symmetric positive definite matrix and multiple right-hand sides available in sequence. We first propose a general class of preconditioners, called Limited Memory Preconditioners (LMP), whose construction involves only a small number of linearly independent vectors and their product with the matrix to precondition. After exploring and illustrating the theoretical properties of this new class of preconditioners, we more particularly study three members of the class named spectralLMP, quasi-Newton-LMP and Ritz-LMP, and show that the two first correspond to two well-known preconditioners (see [8] and [20], respectively), while the third one appears to be a new and quite promising preconditioner, as illustrated by numerical experiments.
منابع مشابه
New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملA Matrix-Free Preconditioner for Sparse Symmetric Positive Definite Systems and Least-Squares Problems
We analyze and discuss matrix-free and limited-memory preconditioners (LMP) for sparse symmetric positive definite systems and normal equations of large and sparse least-squares problems. The preconditioners are based on a partial Cholesky factorization and can be coupled with a deflation strategy. The construction of the preconditioners requires only matrix-vector products, is breakdown-free, ...
متن کاملAINVK: a Class of Approximate Inverse Preconditioners based on Krylov-subspace methods, for Large Indefinite Linear Systems
We propose a class of preconditioners for symmetric linear systems arising from numerical analysis and nonconvex optimization frameworks. Our preconditioners are specifically suited for large indefinite linear systems and may be obtained as by-product of Krylov-subspace solvers, as well as by applying L-BFGS updates. Moreover, our proposal is also suited for the solution of a sequence of linear...
متن کاملA Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides
We propose a variant of the block GMRES method for the solution of linear systems of equations with multiple right-hand sides. We investigate a deflation strategy to detect when a linear combination of approximate solutions is already known that avoids performing expensive computational operations with the system matrix. We specifically focus on the block GMRES method incorporating deflation at...
متن کاملGmres with Multiple Preconditioners∗
We propose a variant of GMRES, where multiple (two or more) preconditioners are applied simultaneously, while maintaining minimal residual optimality properties. To accomplish this, a block version of Flexible GMRES is used, but instead of considering blocks associated with multiple right hand sides, we consider a single right-hand side and grow the space by applying each of the preconditioners...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 21 شماره
صفحات -
تاریخ انتشار 2011